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Box counting method allows to measure the eventual fractal dimension (D) of a single dimension
temporal signal. However its accuracy varies as a function of the frequency sampling (Fs) and the
duration of the tested signal (Sd). Consequently, as it is impossible to highly increase Fs, this method
is not suitable for short physical signals D measurement. Thus, we designed a semi-continuous box
counting method (SCBC) allowing a better approach of the small scales of the signal, especially
useful in case of short single dimension temporal signal.
Let N = number of samples of the tested signal. SCBC provides with the first M points of the graph

log - log owing to the dyadic division of boxes at large scales up to a certain box size SM, such as SM
M

= 2 /Fs. Then, at smaller scales, for each successive point the box size decreases by 1/Fs, that
provides the - log with a large number of points. Thus, when N/S(M+jFs is not a whole number, the
analyzed signal is peripherally and symmetrically reduced in abscissa and ordinate, so that a whole
number of boxes is obtained. But these truncated samples are then reintroduced for designing
following boxes. Using SCBC we measured D of mathematical signals which D is known, and
compared these results to those obtained using the classic dyadic box counting method.

1 Introduction

A continuous physical signal such as a sound signal, of which speech is an example,
constitutes a time series. If this series is self-similar, measurement of its fractal dimension
(D) allows fluctuations to be characterised by quantifying the complexity and irregularity
of this signal. The classic box counting method seems the most appropriate to quantify
complexity in the temporal succession of events. As the box size is divided by 2 for each
measurement, this method may be termed dyadic box counting method (DyBC). In the
framework of our research to improve signal processing in auditory prosthesis [1,2,3], we
believed that this eventual D of speech elements could help patients with implants to
recognize speech without having to lip-read.

In a recent study [10] we carried out a fractal approach of vowels. But, unlike
mathematical signals, a physical signal cannot be fractal at every scale. However, let be
N(r) the number of boxes filled by events at the resolution r, by definition the generalised
dimension Dgen of the graph of the signal amplitude vs time is obtained using the limit

Dgen = lim [log(N(r))] / [log(l/r)]
r-4 0

Thus, in our study, we had to use the higher resolution to approach infinitely small time
scales, and to estimate the eventual fractality of vowels. In this aim we could observe that
it is possible to appreciate, at least, the tendency of the points set by calculating the slope
of the last 3 points, i. e. D of small size boxes (ssD). We demonstrated that:
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"* in case of sinusoidal signal for which Dgen = 1, ssD allows a better approach of the
value of Dgen than using all points for the slope calculation;

"* in the particular case of speech, ssD is able to supply a kind of significant signature
of the vowels signal.

However we noted that the accuracy of DyBC varies as the ratio of [frequency sampling /
frequency of the tested signal]. But we observed also that this accuracy depends on the
duration of the tested signal. Indeed several authors, e. g. Robinson [5], estimate that at
least 10 points are necessary to characterise the eventual fractality of a physical object.
However, let N be the sample number of the tested signal, p be the number of points on

the log -log graph, obeying N=2P, then one may observe that:
* p drastically diminishes when N decreases
* 1024 samples - i. e. for example 64 ms if Fs = 16 kHz - supply only 10 points;

therefore these data characterise the shortest signal which may be studied by DyBC
with Fs = 16 KHz.

Consequently, as it is impossible to highly increase Fs, DyCB is not suitable for the
measurement of the dimension D of short signals. Thus, we designed a semi-continuous
box counting method (SCBC) allowing to approach the small scales in case of short
single dimension temporal signal. In this study, we describe this SCBC. Then, testing
several mathematical signals, either with a known dimension, or which are not fractal, we
compare its results in various cases to those obtained using the DyBC.

2 Methods and Material

2.1 Measurement methods

Let Ts be the sample duration i.e. 1I/Fs. In this study, in order to first compare DyBC and
SCBC, we used the lowest value allowing use of DyBC

* for Brownian signals: Fs=44.1 kHz, Sd=23 ms,N=1024
* for sinusoidal signal: Fs=16 kHz, Sd=64 ms, N=1024 i.e

Then, in order to appreciate the SCBC efficiency, we use various short duration signals
(0.36, 0.72 and 1.45 ms for Brownian signals, and 1, 2 and 4 ms for sinusoidal signal) and
compare the measured D with the theoretical D.

2.1.1 The dyadic box counting method

This method used 10 boxes whose sizes vary from 23 ms (1024 Ts) to 0.045 ms (2 Ts) for
Brownian signals, and 64 ms (1024 Ts) to 0.125 ms (2 Ts) for sinusoidal signal.

We measured the slope on the log-log graph of these 10 points, which include all
scales from 1024 Ts to 2 Ts (asD); we studied also the small scales from 8 Ts to 2 Ts,
measuring only the slope of the 3 last points (ssD) on the log-log graph.

2.1.2 The semi-continuous box counting method

This method is directly derived from DyBC. It provides the first M points of the graph
owing to the dyadic division of boxes at large scales up to a certain box size SM, such as
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M
SM. = 2 /Fs. Then, at smaller scales, for each successive point the box size decreases by
1/Fs, that provides the log-log graph with a large number of points. Thus, when
(N/S(M.xy'Fs) is not a whole number, we have to peripherally and symmetrically reduce
the analysed signal in the abscissa and the ordinate, so that a whole number is obtained.
But these truncated samples are then reintroduced for designing the following boxes.

In the first part of this study, M=6, allowing to obtain a whole set of 36 points (Table
I). We also separately measured asD, which is supplied by the slope of 36 points on the
log-log graph , and ssD supplied by the slope of only the last 7 points, corresponding to
the small scales from 8 Ts to 2 Ts.

Table I. Sizes of the 36 successive boxes of SCBC in case of D measurement of a 64 ms signal, owing to a 16
kHz frequency sampling, with M=6. For each size (i.e. duration) box, Bs-sn = box size in sample number.

In this example a dyadic division of box size is performed to obtain the first 6 points on the log-log graph, i.e.
large scales, from 1024/Fs (64 ms) to 321Fs (2 ms); then, for small scales, a 1/Fs (0.0625 ms) decreasing is
realised from 31/Fs (1.9375 ms) to 2/Fs (0.1250 ms). However, when the ratio number of samples / duration box
is not a whole number, the analyzed signal is peripherally and symmetrically reduced in abscissa and ordinate,
so that a whole number is obtained. But these truncated samples are then reintroduced in the measurement of the
following boxes. From the 36 boxes of this example, this table only indicates some data, and mainly: the values
of the last 10 boxes; the values of the box corresponding to the biggest signal reduction of the signal (24
samples); in this case, for instance, for the measurement of this box (1.525 ins), the 12 first and 12 last samples
of the 1024 samples which constitute the tested signal have not been analysed.

Dyadic division 1/Fs Part of the signal
decreasing decreasing which is not analysed

with the box size Bs-sn

Box duration Bs-sn Box duration Bs-sn

64 ms 1028
32 ms 512
16 ms 256
8 ms 128
4 ms 64
2 ms 32

1.9375 ms 31 1 sample
1.8750 ms 30 4 samples

1.8125 ms 29 9 samples

1.5625 ms _25 24 samples

0.6250 ms 10 4 samples

0.5625 ms 9 7 samples
0.5000 ms 8 0 sample
0.4375 ms 7 2 samples

0.3750 ms 6 4 samples
0.3125 ms 5 4 samples
0.2500 ms 4 0 sample
0.1875 ms 3 1 sample
0.1250 ms 2 0 sample
0.0625 ms 1 0 sample
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In the second part of our study, using various short duration signals, M=0 allowing to
obtain 15, 31 and 63 points for 0.36, 0.72 and 1.45 ms in case of Brownian signal, and 1,
2, and 4 ms for sinusoidal signal. In these cases the slope of the log-log graph is based on
the 10 last points.

2.2 Tested signals

We used 4 mathematical signals. Some of them are fractal with a known dimension: there
are 3 Brownian signals (D = 1.5, 1.4, and 1.3). Another signal is not fractal (1 kHz
sinusoidal signal), but its generalised dimension D,,n is known and equal to 1. For each
signal we randomly selected 24 trajectories, each of 64 ms duration. We used Matlab
software [6] to transform and analyse these sounds into 16 bit "wav" format.

Using both methods we measured each of these 24 D values and calculated the
corresponding D mean value and confidence intervals.

2.3 Statistical study

Results were studied using the SPSS statistical package. Repeated measures of analysis of
variance, using statistical contrasts to perform pairwise comparisons, were used to
compare D measures.

Both DyBC and SCBC use the measure of the slope of the line obtained by linear
regression on the log-log graph to determine D. However, only one of the two
components is a variable, which represents the fluctuation in the signal. The other is a
regular function of time. Therefore, in order to quantify the eventual bias, we calculated
the slope and the corresponding error, i.e. the difference between the observed ordinate
and the theoretical ordinate on the regression line.

3 Results

Measurement of slope and corresponding error gave values ranging from 10-4 to 10-7. For
each linear regression we observed a very small error ranged from 10-4 and 10-7.

Table II. Mean value (upper line) and confidence interval (lower line) of D measurement of 24 randomly
selected 64 ms duration parts of mathematic signals, using DyBC and SCBC, as a function of the size of the
studied scales (all sizes = asD, from 23 to 0.045 ms for Brownian signals and 64 to 0.1250 ms for sinusoidal
signal; only small sizes = ssD, from 0.18 to 0.045 ms for Brownian signal, and 0.5 to 0.125 ms for sinusoidal
signal).

DyBC - asD SCBC - asD DyBC - ssD SCBC - ssD
10 boxes 36 boxes 3 boxes 7 boxes

Brownnian signal 1.47 1.42 1.34 1.30
D=1.5 1.45- 1.48 1.40- 1.43 1.33- 1.34 1.30- 1.31
Brownnian signal 1.39 1.36 ** 1.27 1.25
D=1.4 1.37- 1.41 1.35- 1.38 1.26- 1.27 1.25- 1.26
Brownnian signal 1.30 1.28 1.21 1.25
D=1.3 1.29- 1.33 1.27- 1.30 1.20- 1.21 1.25- 1.26
1 kHz Sinus. signal 1.83 1.85 1.16 1.15
Dgen=l 1.83- 1.84 1.85- 1.85 1.09- 1.23 1.11 - 1.18
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3.1 Fractal signals

Results are summarised in Table II.

In case of asD measurement, for Brownian signal, for which D = 1.5, the difference
between DyBC and SCBC is significant. However none of these methods includes the
theoretical D value in its confidence interval

For Brownian signals for which D = 1.4 and 1.3, the difference between DyBC and
SCBC is not significant.

In case of ssD measurement, the difference between DyBC and SCBC is not
significant for Brownian signal for which D = 1.5. It is significant for Brownian signal
with D = 1.4 and 1.3. But the theoretical D value is never included in both methods'
confidence intervals as the intervals do not overlap.

3.2 Non fractal signal

In cased of asD measurement, the difference between DyBC and SCBC is not significant.
The calculated D is very different from Dgen

In case of ssD measurement, the difference between DyBC and SCBC is not
significant. But the calculated D tends to approach the Dgen•

Table III. Mean value (upper line) and confidence interval (lower line) of D measurement of 24 randomly
selected parts of mathematical signals of various duration, using SCBC. NAS = total number of samples which
have not been analysed.

0.36 ms 0.72 ms 1.45 ms
16 Ts 32 Ts 64 Ts
15 points 31 points 63 points
NAS=43 NAS=229 NAS=920

Brownnian signal 1.31 1.33 1.30
D=1.5 1.27- 1.34 1.31 - 1.35 1.28- 1.32
Brownnian signal 1.25 1.30 1.30
D=1.4 1.23- 1.27 1.28- 1.32 1.28- 1.30
Brownnian signal 1.24 1.28 1.29
D=1.3 1.23- 1.26 1.27- 1.29 1.28- 1.31

1 ms 2 ms 4 ms
16 Ts 32 Ts 64 Ts
15 points 31 points 63 points
NAS=43 NAS=229 NAS=920

1 kHz Sinus. signal 1.32 1.19 1.15
Dgen=l 1.31 - 1.33 1.18- 1.20 1.14- 1.15

3.3 Short duration signals

The measured D value progressively approaches the theoretical D as the duration of the
signal increases (Table III). In case of Brownian signals with D = 1.4 and 1.3, the
differences observed between each pair of measures are significant only for the
comparisons 0.36 ms vs 0.72 ms and 0.36 ms vs 1.45 ms. In case of non fractal signal the
difference is significant for the comparisons 1 ms vs 2 ms, 1 ms vs 4 ms, 2 ms vs 4 ms.
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4 Discussion

4.1 Methodology

We could have tried to study other fractal signals than Brownian signals. However, in
practice it is difficult to obtain such mathematical signals, which are surely fractal; this
difficulty is evident if, for instance, we consider white noise.

The value of M is important and we shall discuss it later.

4.2 Efficiency of SCBC

4.2.1 Fractal signals

In case of asD measurement, one may observe that the efficiency of both DyBC and
SCBC decreases as D - i.e. the signal roughness - increases. That implies that the signal
irregularities are not correctly taken into account by the relatively narrow window which
constitutes the tested signal duration.

Besides, in case of ssD measurement, despite the difference between SCBC and
DyBC being significant, none of these methods gives correct D value. That is probably
due to the fact that, in this particular case of fractal signal, the observation of only the
small scales does not include the long dependence of the Brownian signal.

4.2.2 Non fractal signal

The values of asD measurement are very different from the true value of D_,. That seems
normal, because the concept of Dge. is valuable only on infinitely small scales.

Conversely, ssD tends to reach the true value of Dg.., and we may observe that there
is no significant difference between DyBC and SCBC

4.2.3 Short duration signal
If we consider Table III and the SCBC-asD column of Table II, and recall the
significance of the difference between the various pairs of measurements, we may
observe that the efficiency of SCBC depends on the signal duration, whatever the signal.
In case of Brownian signal, this efficiency also inversely depends on the D value. These
discrepancies may be explained by:
"* the truncation of the Brownian signal, which distorts its correlation function adding

high frequencies in its spectrum,
"* the temporary suppression of some samples during the SCBC management. This

suppression represents a bias; this bias probably increases with the number of
samples which are not analysed, and also with the reduction in signal duration.
Here the value of M must be discussed. In this preliminary study we arbitrarily
chose M=6 for comparison between SCBC and DyBC, and M=O for testing
efficiency of SCBC in case of signals shorter than 64 ms. However, the fewer are
the samples which are not analysed, the better is probably the SCBC efficiency. It
could be worthwhile to improve SCBC efficiency choosing M value as great as
possible, in such a way as to obtaining only 10 necessary points for slope
calculation.



Nevertheless one must underline that, in case of non fractal signal, the value of Dg,, is
correctly approached by SCBC.

4.2.4 ssD significance

One may observe that the use of asD is efficient for signals with long correlations (e.g.
Brownian signals), while ssD is more efficient for signals where the dimension is
observable at the smallest scales (e.g sinusoidal signals) or for signals that are uncertain to
have a fractal dimension. But fractal dimension is always defined as a limit, which
implies that the structure can be analysed in arbitrarily high resolution. However, this
trend is only achieved for an infinite number of points, which is conceivable for a
theoretical signal, but impossible for a natural signal. In practice, if we consider a
physical object, its structure is given by a finite data set representing its discrete
digitisation. Thus, using only the last points of the curve, i.e the smallest scales, the
dimension of an object which is fractal is not measured exactly. But ssD may be
considered as a kind of signature of the signal, which may be characteristic [4] in some
cases; the advantage of this estimation of ssD is that it highlights the convergence to
generalised dimension of an object for the smallest resolutions. That explains why, in case
of sinusoidal signal, we observed that the measurement of ssD gives the trend towards the
correct D value more rapidly (Fig. 1,2,3,4).
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Figure 1. D values (ordinate) obtained using box-counting method for several sinusoidal sounds as a function of
frequency sampling using asD measurement.
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Figure 2. D values (ordinate) obtained using box-counting method for several sinusoidal sounds as a function of
frequency sampling using ssD measurement.
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Figure 3. D values (ordinate) obtained using box-counting method for several sinusoidal sounds as a function of

frequency sound using asD measurement.
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Figure 4. D values (ordinate) obtained using box-counting method for several sinusoidal sounds as a function of
frequency sound using ssD measurement.

4.3 In the literature

One may find other methods in the literature to determine D of a single dimension
temporal signal. In our Laboratory, we attempted to employ these methods [7] using the
same mathematical signals as we used in this paper. All these results may be compared.

4.3.1 The Richardson length method [8]

This method measures the perimeter of an object with various length of rulers; when
plotting log perimeter against log ruler length, a fractal object gives a straight line with a
negative slope S, and D =I - S. But this method is difficult to be computed without any
risk of bias. Moreover most signals must be digitised to be easily studied using
computers; consequently they are not yet continuous, burepresent a series of data.
Anyway Pickover [C] demonstrated that this method supplies with the same results as
using box-counting method on the same but digitised signal.

4.3.2 The power spectrum density (PSD) measurement

This technique has been employed [10] using the Fourier transform generated spectral
density function, which gives intensity or power at each frequency. The results
demonstrate that this method is valuable for sounds with PSD in 1/f, as Brownian signals
for instance. But it is not usable for signals analysis, which have not PSD in 1/f.
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4.3.3 The rescaled range analysis (RRA)

This is the earliest empirical method. It has been described by Hurst to study the long
time series of Nile floods. It is based on the assumption that a large number of natural
phenomena are time series with a long-term correlation. This method was recently studied
by Bassingthwaighte et al. [11]. It allows to characterise a one-dimensional time series by
simultaneously providing a measure of variance and long-term correlation of its
components (the term < memory >> is often used). But the results obtained with the signals
where the PSD is not a power law, or which do not have - even theoretically - a fractal
dimension are totally incoherent. This is the case for a constant or a sinusoidal signal.
RRA only appeared to be effective for the signals with a very long correlation, or a power
spectrum of 1/f. However, even in these cases, application of known Brownian signals
underestimated true H for H>0.72, and underestimated H for H<0.72.

4.3.4 The dispersional analysis method (DAM)

This method is also empirical. It was recently studied by Bassingthwaighte et al. [12] to
evaluate whether it was effective to determine the fractal dimension of a Brownian signal,
according to the type of this signal and the size of the data set. DAM measures the
standard deviation of the single dimension signal at different scales. The objective is to
reveal a possible power law in the successive values of the standard deviation of the
signal. But for the signals where the PSD is not a power law, or which do not have a
fractal dimension, the results are similar to those obtained with RRA. Consequently,
despite the fact that the evaluation of true H of Brownian signals is more precise than
with RRA, one may conclude that all these methods are less efficient than box DyBC or
SCBC.

4.3.5 Other tools

Although the aim of this paper is not the study of the eventual fractal features of speech,
one may briefly mention other tools proposed by several authors for use of fractal
geometry as a model for describing irregularities of graphical wave forms of human
speech. Bohez et al. [13] used box counting method and cluster analysis; however Ds
values have not been clearly specified. Using different box shapes and a specific box-
counting algorithm, Maragos [14] described different D (1 to 1.3) for vowels as a function
of their scale analysis, and his results are in accordance with our first measurement [4] .
Other authors studied the multifractal and chaotic features of speech, but we shall not
discuss them in this paper, which only considers a fractal approach to single dimension,
short temporal signals.

5 Conclusion

As SCBC increases the number of points at small scales, it improves the DyBC
performances, pushing far away its physical limits due to frequency sampling and
duration of the tested signal. However its efficiency presents comparable limits:
"* some of them are physical, and for example Fs=16kHz, at least 10 points on the

log-log graph are necessary, the shortest signal which may be analysed using SCBC
must have a minimum of 0.6875 ms duration.

"* others are due to the principle of the method, which leads to some samples not
being analysed. However, choosing M value as a function of Sd reduces the number
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of points necessary for the slope calculation to 10 on the log-log graph could

improve SCBC efficiency.
We plan to study further this possible improvement. Then we shall use this method to
explore the eventual dimension D of transient parts of consonants.
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